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We developed an advanced computer-aided diagnostic �CAD� scheme for the detection of various
types of lung nodules on chest radiographs intended for implementation in clinical situations. We
used 924 digitized chest images �992 noncalcified nodules� which had a 500�500 matrix size with
a 1024 gray scale. The images were divided randomly into two sets which were used for training
and testing of the computerized scheme. In this scheme, the lung field was first segmented by use
of a ribcage detection technique, and then a large search area �448�448 matrix size� within the
chest image was automatically determined by taking into account the locations of a midline and a
top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized
search method, we divided the entire search area into 7�7 regions of interest �ROIs: 64�64
matrix size�. In the next step, each ROI was classified anatomically into apical, peripheral, hilar,
and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates
and extraction of image features were applied for each localized region �128�128 matrix size�,
each having its central part �64�64 matrix size� located at a position corresponding to a ROI that
was classified anatomically in the previous step. Initial candidates were identified by use of the
nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the
filter size was varied adaptively depending on the location and the anatomical classification of the
ROI. We extracted 57 image features from the original and nodule-enhanced images based on
geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image
features were obtained from the corresponding locations in the contralateral subtraction image. A
total of 71 image features were employed for three sequential artificial neural networks �ANNs� in
order to reduce the number of false-positive candidates. All parameters for ANNs, i.e., the number
of iterations, slope of sigmoid functions, learning rate, and threshold values for removing the false
positives, were determined automatically by use of a bootstrap technique with training cases. We
employed four different combinations of training and test image data sets which was selected
randomly from the 924 cases. By use of our localized search method based on anatomical classi-
fication, the average sensitivity was increased to 92.5% with 59.3 false positives per image at the
level of initial detection for four different sets of test cases, whereas our previous technique
achieved an 82.8% of sensitivity with 56.8 false positives per image. The computer performance in
the final step obtained from four different data sets indicated that the average sensitivity in detecting
lung nodules was 70.1% with 5.0 false positives per image for testing cases and 70.4% sensitivity
with 4.2 false positives per image for training cases. The advanced CAD scheme involving the
localized search method with anatomical classification provided improved detection of pulmonary
nodules on chest radiographs for 924 lung nodule cases. © 2006 American Association of Physi-
cists in Medicine. �DOI: 10.1118/1.2208739�
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I. INTRODUCTION

Lung cancer has been the leading cause of cancer death in
the United States since 1987, and is expected to comprise
28% of all cancers in 2004.1 Therefore, several projects, in-
cluding screening by use of low-dose helical CT scans and
chest radiography, have been attempted2,3 and are currently
being evaluated4,5 in order to improve the rate of early de-
tection of lung cancer. In the detection of lung cancer at an

early stage, screening by CT is clearly superior to screening
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by chest radiographs;4 however, there are some issues with
CT screening such as a large number of false-positive �be-
nign nodule� findings and overdiagnosis. Therefore, the use
of CT screening for lung cancer is a highly controversial
issue at present.6

Chest radiography, which is simple to perform and inex-
pensive, has been used as the first and most common exami-
nation even when this examination was done for purposes
other than lung cancer detection. It should be noted that the

large number of chest radiography examinations compared to
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thoracic CT scans indicates that there are many more oppor-
tunities to detect lung abnormalities in the community by use
of chest radiographs than by use of CT examinations. For
example, an average annual number of 236 chest radiogra-
phy examinations were obtained per 1000 population com-
pared with 19 body CT scans for the same patient group in
the same period, between 1991 and 1996.7 Therefore, if we
could assume empirically that thoracic CT would account for
25% of all body CT scans, then there would be 50 times as
many opportunities to detect lung nodules with chest radiog-
raphy as with thoracic CT. However, it has been well dem-
onstrated that detection of lung cancer at an early stage on
chest radiographs is a very difficult task for radiologists.8–11

Since the early 1980s, the concept of and the methodol-
ogy for computer-aided diagnosis �CAD� have been devel-
oped to assist radiologists in detecting lesions and improving
their sensitivity in the differential diagnosis. Unlike the con-
cept of an automated diagnostic system which was proposed
in the 1960s, CAD may be defined generally as a diagnosis
made by a radiologist who takes into account the results of
automated computer analysis of radiologic images.12,13

Therefore, the computer output may be used as a “second
opinion” for improving radiologists’ decision-making and
avoiding oversight, but it should not be used independently
without physicians’ judgment.

The development of a CAD scheme for detection of lung
nodules in chest radiographs has been one of the important
projects in our laboratory among CAD methods for various
radiologic modalities.14–17 In addition, several approaches to
the detection of lung nodules on chest radiographs were re-
ported by Suzuki et al.,18 Lo et al.,19 Mao et al.,20 and
Penedo et al.21 Although the performance of the CAD
scheme for detection of lung nodules has achieved a rela-
tively modest sensitivity, with a small number of false posi-
tives per image, such as sensitivities of 73.3% with 0.76 false
positive per image by Suzuki et al.,18 and 70.0% with 1.7
false positives per image by Xu et al.,17 it is important to
note that this level of performance was realized with only a
small number of cases.

The first commercial system for lung nodule detection
CAD was developed by Deus Technology Inc. �Riverain
Medical at present� and received FDA approval for clinical
use in 2001. With this commercial CAD system, Freedman
et al.22 reported a sensitivity of 65.0% with 5.3 false posi-
tives per image from a clinical trial in an independent vali-
dation test by use of 80 cases containing small primary lung
cancers and 160 cases not containing cancers. Kakeda et al.23

reported the use of another commercial CAD system devel-
oped by Mitsubishi Space Software for the detection of lung
nodules: the performance of this CAD system indicated a
sensitivity of 73.0% with 4.0 false positives per image for
274 chest radiographs including 323 lung nodules.

As mentioned earlier, the performance of CAD schemes
for the detection of lung nodules depends strongly on the
number of cases and the characteristics of the image database
used for their development. For example, the smaller the
number of cases used for training of a CAD scheme, the

lower the performance for testing new different cases would
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be. Therefore, when the number of cases used in the study
would become sufficiently large, we may assume that the
performance of a CAD scheme for lung nodule detection
could be estimated in actual clinical situations.

In this study, we developed an advanced computerized
scheme for the detection of lung nodules on chest radio-
graphs by use of a large number of cases including 924 chest
images with 992 lung nodules. This advanced method was
developed by incorporating several new techniques, includ-
ing a localized search method, an adaptive image filter ap-
plied to the anatomical classification for a localized region, a
contralateral subtraction technique, as well as automated pa-
rameter settings for artificial neural networks �ANNs� by use
of four different combinations of training and test data sets
which were randomly selected from the original image data-
base.

II. MATERIAL AND METHODS

A. Image database

We initially collected a total number of 1000 lung nodule
cases �1076 lung nodules� for this study, which included 411
screen-film chest radiographs and 589 digital chest images.
Digital chest images were collected at two institutions in the
United States and three institutions in Japan. Screen-film im-
ages were obtained from two institutions in the United States
and one institution in Taipei, Republic of China, and then
digitized by use of a laser film digitizer. One hundred fifty-
four nodule cases in the Japanese Standard Digital Image
Database developed by the Japanese Society of Radiological
Technology,24 which is publicly available, were also in-
cluded. All nodules were confirmed initially by CT examina-
tion and/or the consensus of radiologists at each institution.
Genders in this database were 376 females, 391 males, and
233 unknown.

The criteria for nodule cases to be included in the 1000-
image database were: �1� “actionable” cases25 with nodules
in which radiologists can identify their locations correctly,
�2� nodule margins which can be confirmed by radiologists
on chest images, �3� no repeat cases from the same patient,
�4� no suspicious nodules which were not confirmed by CT
examination, �5� no cases with other major abnormalities
which might affect radiologists’ decision-making for the de-
tection of nodules, �6� no cases with poor-quality images
such as extremely low exposure in digital images and films,
and �7� 60 mm for the maximum nodule size, but no “very
obvious” nodules larger than 40 mm. In addition, 76 chest
images �84 lung nodules� in the 1000 chest images were
excluded because these images included lung nodules lo-
cated in opaque areas of the chest image, i.e., the mediasti-
num, retrocardiac lung, and lung projected on or below dia-
phragm �subdiaphragmatic lung� regions. Please note that we
used the term “opaque area” for indicating one specific area
which included the mediastinum, retrocardiac lung, and lung
projected below or on diaphragm regions, in order to distin-
guish these regions from the projected lung fields which
were the subject of this study. Finally, we used 924 chest

images including 992 lung nodules in this study for the train-
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ing and testing of the CAD scheme. Because the original
chest images had various combinations of matrix size, pixel
size, and gray scales, all of the images were converted to a
500�500 matrix size �0.7 mm pixel size� and 10 bit gray
scale by use of an averaging subsampling method and a bit-
shift method. In addition, the gray level and contrast of all
images were optimized manually by one co-author �J.S.� in
order to correct for inadequate exposure conditions.

In order to determine the size of lung nodules and the
degree of subtlety for radiologists’ visual detection of lung
nodules, we obtained manual outlines of nodules �for size�
and five-scale subjective ratings �for subtlety� by the consen-
sus of three radiologists. The five degrees of subtlety in the
detection of a lung nodule were defined as extremely subtle,
very subtle, subtle, relatively obvious, and obvious. Table I
shows the number of cases in each subtlety group and each
size group of lung nodules for all 992 lung nodules, where
the effective diameter was determined by the diameter of the
circle that had the same area as that of the nodule outline.14

The numbers of lung nodules in the database were 53 ex-
tremely subtle, 208 very subtle, 426 subtle, 240 relatively
obvious, and 65 obvious, and the mean size was 17.6 mm
�size range, 6.0–37.9 mm�.

First, we divided the 1000 cases randomly into 500 train-
ing and 500 test cases, and we then eliminated 76 cases
including 84 lung nodules located in opaque areas, as de-
scribed earlier. Therefore, we had 465 training cases �500
lung nodules� and 459 test cases �492 lung nodules� in the
first data-set partition. We used training cases only for the
development of the computerized scheme, such as selection
of image features, determination of threshold values, and pa-
rameter settings for ANNs such as the number of iterations,
slope of sigmoid functions, learning rate, and threshold val-
ues for removing false positives. Test cases were used for
validating the performance of the computerized scheme
trained with the training cases. In this study, we repeated the
same procedure of training and testing four times with four
different combinations of disjoint training and test cases. In
order to create four different combinations, we obtained two
different sets of training and testing cases first, and then we
switched training cases and test cases in each set. The num-
ber of cases in each subgroup discussed in the following

TABLE I. The number of lung nodules in each subtlety
cases.

Degree of subtlety

Effecti

5–10 10–15 15–

Extremely subtle 4 13 1
Very subtle 16 63 6

Subtle 30 131 11
Relatively obvious 21 82 6

Obvious 5 23 1
Total 76

�7.7%�
312

�31.5%�
27

�27.
indicates the numbers obtained from the first set of training
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and test cases; therefore, slightly different numbers of cases
were used in the four combinations, as shown later.

B. Computerized scheme for nodule detection

As shown in Fig. 1, our new CAD scheme for the detec-
tion of lung nodules consists of three major steps, i.e., �1�
segmentation of lung fields and anatomical classification by
7�7 regions of interest �ROIs�, �2� identification of initial
nodule candidates and extraction of image features in the
original, density-trend-corrected original, nodule-enhanced,
and contralateral subtraction images,26 and �3� elimination of
false positives by use of sequential application of three
ANNs for the distinction between true positive and false-

p and in each nodule size group for 924 lung nodule

ameter of lung nodules �mm�

20–25 25–30 30–40 Total

14 2 2 53�5.3%�
40 22 4 208�21.0%�
97 43 14 426�42.9%�
48 21 6 240�24.2%�
15 3 0 65�6.6%�

214
�21.6%�

91
�9.2%�

26
�2.6%�

992

FIG. 1. Overall computerized scheme for the detection of lung nodules on
grou

ve di
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8
3
1
2
9
3

5%�
chest images.
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positive candidates. In these three steps, we introduced sev-
eral new techniques into our existing computerized scheme,
such as grouping of nodule candidates in different anatomi-
cal regions for all of the subsequent steps, the low-pass filter
technique in step 1, an average radial gradient �ARG� filter-
ing technique for the initial detection, and extraction of new
image features in contralateral subtraction images in step 2,
and an automated method for determining parameter settings
for a sequential application of three ANNs in step 3. Details
of our computerized scheme are described in the following.

1. Segmentation of lung fields and classification
of anatomical regions

Before the segmentation of lung fields, we applied a low-
pass filter technique to the input original image in order to
remove the effect of edge enhancement by the unsharp mask-
ing technique.

The entire lung region, including the mediastinum, retro-
cardiac lung, and subdiaphragmatic lung, was segmented ini-
tially by use of ribcage edge detection techniques.27,28 Once
we had segmented the lung field, a nodule search area �448
�448 matrix size� including 49 �7�7� ROIs �64�64 matrix
size� was placed over the original image. The location of
nodule-search area was determined based on the locations of
a midline and top-edge of the segmented lung field as illus-
trated in Fig. 2. Each ROI in the nodule search area was
classified automatically into four different anatomical re-
gions, i.e., �1� apical, �2� peripheral, �3� hilum, and �4�
opaque areas and outside the boundary of lung fields. In the
anatomical classification, the location of the ROI was used
first. Figure 3 illustrates an example of anatomical segmen-
tations for the same case as shown in Fig. 2. In this classifi-
cation, the ROIs located in the upper two rows in 7�7 ma-
trixes are likely to be classified as “apical” regions, and the
ROIs located in the middle three columns are likely to be
classified as “hilum” region. In addition, an average pixel
value and the histogram of the edge gradient in each ROI

FIG. 2. Example of segmented lung field and 7�7 matrixes of ROIs ad-
justed to the midline and top edge of the segmented lung field. The ROI has
128�128 matrix size which covers an entire lung field by overlapping two
ROIs.
were used for distinguishing peripheral regions of the lung
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field from the apical and hilum regions. For example, the
ROI located in peripheral region was likely to have strong
edge gradients in two orthogonal directions due to anterior
and posterior rib edges, and also to have relatively low pixel
values �i.e., low densities� compared with the ROI in the
hilum region. The next step for identifying nodule candidates
was executed only when the corresponding ROI was classi-
fied as apical, peripheral, or hilum regions, because an
opaque area was not a subject of this study.

The localized search regions for identifying nodule candi-
dates had a 128�128 matrix size, each region having its
central part �64�64 matrix size� located at a position corre-
sponding to ROI which was classified anatomically in the
previous step as shown in Fig. 2. Therefore, a localized
search region was overlapped with adjacent ones on the
original image. In addition to the original image, the density-
trend-corrected image for the original image was processed
in each localized region by use of a two-dimensional density
trend correction technique29 together with a Gaussian
smoothing filter. Because of the density trends that were
caused by differences in body thickness, especially near the
chest wall, it was very difficult to isolate lung nodules at-
tached to the chest wall without density trend corrections.

2. Identification of initial nodule candidates and
extraction of image features

A nodule-enhanced image was obtained from the density-
trend corrected image for each localized search region in
order to identify initial nodule candidates in the subsequent
step. The nodule-enhanced image was provided by sequential
application of the ARG filter and the Gaussian filter that
were obtained from the density-trend-corrected image. Fig-
ure 4 illustrates the ARG filter. The radial component of the

FIG. 3. Example of anatomical classification for 7�7 matrixes of ROIs
which were determined by use of the location of ROI, an average and
standard deviation of pixel values, and the histogram of the edge gradient in
each ROI.
local edge gradient at the pixel P�i , j� toward the pixel
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C�x ,y� of interest was determined by the magnitude of edge
gradient g�i , j� and the angle between the radial direction and
the orientation of the edge gradient. Then, the output of the
ARG filter ARG�x ,y� at the pixel C�x ,y� was defined as

ARG�x,y� =
1

�A� �
�i,j��A

�g�i, j��cos � , �1�

where �A� is the area of a circle A for the ARG filter that was
covered by a radius R,

�A� = ��i, j���x − i�2 + �y − j�2 � R2� . �2�

Because the ARG filter can enhance any regions where edge
gradients were oriented toward the center of a circle, low-
contrast and/or subtle nodule candidates could be enhanced.
In addition, most of the rib edges were not enhanced by this
filter, because the gradient of rib edges was not likely to be
oriented toward the center of a circle. It is our experience in
studies on the detection of lung nodules that the size of lung
nodules tends to be large when the location of a nodule is
close to the mediastinum region. Therefore, we applied dif-
ferent sizes �ranging from 10.5 to 19.0 mm� of the ARG fil-
ter, which was equal to 2R, depending on the location and
the anatomical regions of the ROI.

Multiple-gray-level thresholding of the filtered image was
performed for identifying initial nodule candidates. We auto-
matically determined threshold pixel values in each step of
thresholding by use of histogram of pixel values within each
ROI. We used the area under the histogram, the percentage
of which ranged from 0.3% to 60% at high pixel values.
Threshold pixel value in each step started from the pixel
value corresponding to 0.3% of the area under the histogram,
and the subsequent threshold values were determined adap-

FIG. 4. Explanation of the average radial gradient �ARG� filtering technique
for a calculation point C�x ,y�. The ARG filter output ARG�x ,y� was defined
as an average value of the radial gradient component of the edge gradient
toward the center point at all locations P�i , j� within a circle A �radius=R�.
tively by use of 1% of the difference in the area under the
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histogram from the previous step. However, if the difference
between the two successive threshold values was less than a
specific pixel value �1% of the range of the histogram�, the
threshold value was determined by subtracting the specific
pixel value from the previous threshold value. Therefore, the
numbers of thresholding and threshold pixel values for each
ROI were determined automatically and independently. In
addition, multiple-thresholding was completed when the
number of identified candidates reached a specific number
�i.e., 6 for apical and hilum, and 10 for peripheral�, so that
the number of thresholding was different in different ROIs.

Initial nodule candidates, which is called an island here
and is derived by multiple-gray-level thresholding, were
identified if the three image features, i.e., the effective diam-
eter, circularity, and irregularity of a candidate meet the fol-
lowing requirements: an effective diameter14 of 7.0 mm or
greater, circularity14 of 0.70 or greater, and irregularity14 of
0.30 or lower for the apical and peripheral regions. These
threshold values have been determined empirically during
the last two decades. In the initial identification, we moni-
tored the location of centroid of candidate as well as three
image features listed earlier. When the three image features
of identified candidates were in the range specified for the
initial identification; and also the distance between the loca-
tion of identified candidate and any locations of previously
identified candidates was less than two times the effective
diameter of identified candidate, all of the features were up-
dated for a newly identified candidate.

In the process of initial identification, we obtained 10 im-
age features based on the contour of an isolated island on the
nodule-enhanced image, such as the �1� threshold value �%�
at the initial identification level, �2� effective diameter, �3�
circularity, �4� irregularity, �5� average pixel value within the
island, �6� contrast value obtained by the difference between
the maximum and minimum pixel values within the island,
�7� normalized horizontal location, �8� normalized vertical
location, �9� horizontal distance from the midline, and �10�
sequential order of a candidate among all of the candidates
detected initially.

In addition to the 10 initial image features, 47 image fea-
tures were extracted from original, density-trend-corrected
original, and nodule-enhanced images at the location of ini-
tial detection of a nodule candidate based on geometric
features,14 gray-level features, edge-gradient features17 and
background features which were determined with image fea-
tures related to the characteristics of the background struc-
ture of a nodule candidate. In order to extract some of the
image features, we applied two contours of a nodule candi-
date which were obtained from the density-trend-corrected
original and nodule-enhanced images, respectively, by use of
the region-growing technique.30,31 Furthermore, 14 image
features were obtained from the corresponding locations of
the contralateral subtraction images.26 Figure 5 illustrates �a�
an original image with a nodule candidate indicated by an
arrow, and �b� a contralateral subtraction image, together
with four small ROIs �50�50 matrix size� which were ob-
tained from �c� original, �d� density-trend corrected original,

�e� nodule-enhanced, and �f� contralateral subtraction im-
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ages. Finally, a total of 71 image features were employed for
three ANNs in order to reduce the number of false-positive
candidates.

Table II shows the list of image features extracted from

FIG. 5. Example of �a� original chest image including one lung nodule �ar-
row�, �b� contralateral subtraction image obtained from original image, and
segmented small ROI �50�50� obtained from �c� original image, �d�
density-corrected original image, �e� nodule-enhanced image, and �f� con-
tralateral subtraction image.

TABLE II. List of 71 image features obtained at the initial identification �IN�,
and extracted from the original image �OR�, density-trend correction �DC�,
nodule-enhanced image �ND�, and contralateral subtraction �CL� images.
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four different images used in our computerized scheme. The
background features obtained from the background region,
which was determined by the area between the nodule out-
line and the outer frame of a small ROI of original image. As
illustrated in Fig. 6, background features included �1� the
peak pixel value, �2� the peak pixel area ratio, which was
determined by the ratio of the area for peak pixel values �bin
of 10%� in the histogram to the entire area of the histogram,
�3� the lung field area ratio, which was determined by the
ratio of the segmented lung field area to the entire area of a
small ROI, �4� the standard deviation of pixel values, �5� the
average edge angle, which was determined by the average
value of angular components of edge gradients, �6� the peak
angle of the histogram for angular components of edge gra-
dients �bin of 10°� within the range of posterior rib directions
�i.e., 90° to 150° for the left peripheral region�, �7� the ratio
of the area of the peak angle for posterior ribs and the entire
area of the histogram for angular components of edge gradi-
ents, �8� the peak angle for anterior ribs, and �9� the ratio of
the area of the peak angle for anterior ribs and the entire area
of the histogram.

When more than two nodule candidates were identified in
adjacent locations �i.e., the distance between two centroids of
nodule candidates was less than 16.0 mm�, but were identi-
fied in the different localized search regions, in order to
avoid the overlap of nodule candidates for one lesion, only
one nodule candidate which had a larger effective diameter
and/or a higher circularity was retained for the next step.

3. Sequential application of ANNs

In order to reduce the effect of overlapped ribs, before the

FIG. 6. Illustration of background image features which include the outline
of island, background, and outside regions, the histogram of pixel values
which were used for determining peak pixel value and peak pixel area, and
the histogram of angular components of edge gradient for determining peak
angle and area of peak angle. All image features were extracted from the
small ROI �50�50 matrix size� of original image, center location of which
is the same as the centroid of identified candidate.
use of three sequential ANNs, all nodule candidates were
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divided into three rib-shape groups as illustrated in Fig. 7 by
use of three image features related to the background includ-
ing ribs. We employed rib-shape group 1 for candidates that
had a background structure of a strong edge peak due to
posterior ribs only, group 2 for the candidates that had a
background structure of strong peaks due to both posterior
and anterior ribs, and group 3 for other candidates with weak
edges. Three image features used for grouping were �5� the
average edge angle, �7� the ratio of the area of the peak angle
for posterior ribs to the entire area of the histogram, and �9�
the corresponding ratio for anterior ribs, which are included
in the background features described earlier. It is apparent in
Fig. 7 that these three image features would be useful in
classifying nodule candidates among the three rib-shape
groups, thus allowing us to reduce the effect of background
structure in the subsequent application of ANNs. Therefore,
we determined all parameters of ANNs for each rib-shape
group. All ANNs described in the following were trained and
tested on each rib-shape group in each data set.

In order to determine parameters for the ANN such as the
number of iterations; slope of sigmoid functions, learning
rate, and threshold values for removing false positives, we
divided 465 training cases randomly into 234 learning cases
�254 nodules� and 231 tryout cases �246 nodules�, where
learning cases were used only for training ANNs and tryout
cases only for testing ANNs. All of the ANNs were trained
initially with the 234 learning cases, and were tested with the
231 tryout cases by use of a bootstrap technique.32 The boot-
strap technique is a resampling method, which allows gener-
ating a large number of “new” pseudocase sets from the
original case set. We called each pseudocase set “BS case
set,” in this study. The bootstrap data points are a random
sample of size n drawn with replacement from the original
case set �x1 , . . . ,xn�.32 Therefore, the BS case set consists of
members of the original case set, some appearing zero times,
some appearing once, and some appearing more than once in
the “new” BS case sets. Figure 8 illustrates the bootstrap

FIG. 7. Example of lung nodule candidates �each of two actual nodules and
two non-nodules� classified according to three rib-shape groups i.e., the ROI
including a nodule candidate; �Group 1� strong edge in one orientation,
�Group 2� strong edge in multiple orientations, and �Group 3� weak edges.
method used in this study, where we used the number of true
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positives �i.e., lung nodules� in each rib-shape group of the
original tryout cases as the same number of BS case sets,
because we would like to keep the variation between BS case
sets comparable to that of true positives.

In the first ANNs, we applied multiple simple ANNs, each
of which included only two image features as the input data,
in order to remove obvious false positives which were con-
sidered to be outliers in the two-dimensional space of any
two image features, and might degrade the performance of
the subsequent ANNs if not removed. Because we deter-
mined 41 image features �10 features obtained at initial de-
tection, and 31 geometric, gray-level, and background fea-
tures for original, density-trend-corrected original, and
nodule-enhanced images�, there are 820 combinations of any
two image features as the input of the first ANNs. Each ANN
for each of the 820 combinations of two image features was
trained with the 234 learning cases by varying the number of
iterations �100, 200, 300, 400, and 500� and the learning
rates �0.02, 0.05, 0.10, and 0.20�. We empirically employed
one hidden layer with two hidden units and 1.0 for the slope
of the sigmoid function. Once we trained ANNs with various
numbers of iterations and the learning rate for the 820 com-
binations by use of the 234 learning cases, a number of BS
case sets created from the 231 tryout cases by use of the
bootstrap method were tested repeatedly with the same
trained ANN. We monitored the effectiveness in the reduc-
tion of false positives by use of an index �I� in the tryout
cases in order to determine a suitable number of iterations

FIG. 8. Illustration of the overall training scheme for ANNs by use of the
bootstrap method.
and a proper learning rate for each ANN, where I was deter-
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mined by use of the number of false positives �NFP� and the
number of true positives �NTP� removed by use of a cut-off
threshold value of the ANN output �T�, i.e.,

I = NFP/�NTP + 1� . �3�

In order to determine the cut-off threshold value T for
each ANN, we monitored the average of the lower 5% of all
ANN output values for true-positive cases in the BS case
sets. Then, the overall average �Ave� and its standard devia-
tion �Std� for the average of minimum 5% ANN output val-
ues were obtained from all of the BS case sets. Finally, the
cut-off threshold value T for each ANN was determined by

T = Ave − 2.58 Std, �4�

where the distribution of the minimum ANN output values
was assumed to follow the central limit theorem,33 and there-
fore the threshold value for each ANN was determined at
99.9% confidence in theory to include 95% of the ANN out-
put obtained from the population of true positives. For each
combination of two image features, one ANN parameter set
�including the number of iterations and the learning rate� for
obtaining the highest index value was determined automati-
cally. Once we determined a suitable number of iterations,
and the learning rate and the index for the 820 combinations,
these combinations were ranked by use of the index value. In
order to avoid overlaps of the role of each ANN for remov-
ing false positives, the 820 ANNs were applied to the 231
tryout cases sequentially until the index value became less
than 1.0% of the number of false positives included in the
tryout cases. For example, when one specific ANN which
had higher index value could remove 3.6% of false positives
with no reduction of true positives in training cases, this
ANN was selected as one of the first ANNs. On the other
hand, if the ANN could remove 3.8% of false positives with
reduction of three true positives, this ANN was not selected.
Therefore, the number of selected ANNs for the first ANNs
was determined automatically and was independent from the
data set used for training.

Figure 9 shows one result obtained from the first ANNs
for tryout cases. Two image features selected for this ANN
were the circularity of nodule candidates obtained from the
nodule-enhanced image, and the difference in pixel values
between the inside and outside regions of a nodule candidate
obtained from the original image. The estimated cut-off
value which was obtained by use of the bootstrap method
could remove a number of obvious false-positive candidates
with a small reduction of true positives in the tryout cases.

After removing obvious false positives in the first ANNs,
we employed the second ANNs with four groups of image
features as the input data for the four ANNs. These image
feature groups included 10 image features in the initial iden-
tification, which were combined with �1� 12 nodule-
enhanced image features, �2� 18 original image features, �3�
17 density-trend corrected original image features, and �4� 14
contralateral subtraction image features. We selected these
four groups of image features empirically based on our
knowledge. Each ANN for the four image feature groups was

trained with the 234 learning cases by varying the number of
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iterations �1000, 2000, 3000, 4000, and 5000� and learning
rates �0.02, 0.05, 0.10, and 0.20�. We employed one hidden
layer, one half of the number of input units as the number of
hidden units, and 0.30 for the slope of the sigmoid function
empirically. After we trained ANNs with various numbers of
iterations and learning rates for the four image feature groups
by the 234 learning cases, a number of BS case sets created
from the 231 tryout cases by use of the bootstrap method
were tested repeatedly with the same trained ANN. In this
second ANNs, we monitored the average errors of ANN out-
put in the BS case sets in order to determine a suitable num-
ber of iterations and learning rate for each image feature
group. The average errors were calculated by the root mean
square of differences between ANN output and teacher data
�i.e., 0.90 for true positives and 0.10 for false positives�. We
determined the suitable ANN parameters when the average
error in the BS case sets was minimized. We assumed that
this method can reduce overtraining of ANNs.

The third ANN employed four inputs which corresponded
to the output obtained from four ANNs with four image fea-
ture groups. The structure of third ANNs consisted of four
input units with three hidden units of one hidden layer and
one output unit. The slope of the sigmoid curve was 0.30 and
the suitable number of iterations and the learning rate were
determined by the same way as the method described for the
second ANNs.

We tested 459 test cases �492 lung nodules� by use of all
ANNs when their training was completed. All of the ANN
parameters were determined automatically in advance by use
of the 465 training cases, as described earlier. The perfor-
mance of the computerized scheme for the detection of lung

FIG. 9. Relationship between the circularity obtained from nodule-enhanced
images and the difference in pixel value between inside and outside regions
of nodule candidates obtained from original images. Boundary of threshold
values �Ave-2.58Std� was determined by the bootstrap method for a single
ANN with average minimum ANN outputs �Ave�, and its standard deviation
�Std�.
nodules was evaluated by use of free-response receiver op-
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erating characteristic �FROC� curves34 which indicated the
relationship between the sensitivity �%� of lung nodule de-
tection and the number of false positives per image. In addi-
tion to the evaluation of the 459 test cases, we obtained the
performance for the lung nodule detection by use of the 465
training cases in order to examine the difference between the
two results.

The true-positive detection of the computerized scheme
was determined when the distance between the centroid of a
nodule candidate and the centroid of an actual lung nodule
was less than 22.0 mm for the apical and peripheral regions
or 24.0 mm for the hilum region.

III. RESULTS

Table III indicates the numbers of testing cases and of
testing lung nodules included in four data sets and the num-
ber of rules selected in the first ANNs by use of training
cases. The computer performance of the sensitivity and the
number of false positives �FPs� are also shown in Table III,
at the initial detection, for the first ANNs, and for the third
ANNs. The average sensitivity of 92.45% and the average
number of FPs of 59.25 per image at the step of initial de-
tection were improved over those of our previous computer-
ized scheme �sensitivity of 82.8% and 56.8 FPs per image�,
probably because subtle lung nodules of various sizes can be
enhanced by use of an adaptive ARG filtering technique, and
then detected by a multiple-thresholding technique. Figure
10 shows two examples of �a� the original nodule image and
two processed images obtained from �b� our previous
scheme by use of a difference-image technique14 and �c� the
ARG filtering technique. When a subtle lung nodule was
projected on the interval between ribs as shown in Fig. 8, it
was very difficult to isolate lung nodules from ribs by our
previous scheme, because rib edges located on both sides of
the lung nodule were enhanced more strongly than was the
lung nodule. However, the ARG filtering technique can iso-
late such a lung nodule because this technique takes into
account the orientation of edge gradients toward the center of
the nodule.

The average number of selected image feature pairs for

TABLE III. Numbers of test cases and nodules for fou
the 924 cases, and the number of selected ANNs fo
Computer performance of the sensitivity and the num
of initial detection, the first ANNs, and the third AN

Set 1 Set 2

No. of images 459 465
No. of nodules 492 500
No. of ANNs
selected for the
first ANNs

7 5

Computer performance: Sensitivity �FPs/image�
Initial detection 92.3 % �59.1� 92.4% �59.4
First ANNs 90.9% �50.8� 90.2% �52.3
Third ANN 70.1% �5.2� 70.0% �4.9
the first ANNs was 7. Because the first ANNs were used only
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for removing obvious false positives, a small number of two
image feature pairs were likely to be selected conservatively
without elimination of true positives, so that 11.6% of the
initial FPs �average 6.9 of 59.3 FPs per image� were re-
moved with a reduction of 1.7% in the sensitivity.

Figure 11 indicates the average FROC curves obtained
from four sets of training and test cases. The average sensi-
tivity and the average number of FPs per image obtained
with this CAD scheme were 70.1% and 5.0 for the test cases
and 70.4% and 4.2 for the training cases, respectively.

Figure 12 shows the relationship between the average sen-
sitivity in the detection of lung nodules for four sets of test-
ing cases and the size range of lung nodules detected, while
the overall performance of the computerized scheme was re-
tained with 70.4% sensitivity and 4.2 false positives per im-
age. The computer performance was relatively high when the
size of lung nodules was larger than 10.0 mm.

Figure 13 also shows the relationship between the average
sensitivity in the detection of lung nodules for the four sets
of test cases and the degree of subtlety of lung nodules at the
same performance level used in Fig. 12. It should be noted

ferent data sets, which were selected randomly from
first ANNs determined by remaining training cases.
f false-positives per image were obtained at the steps

Set 3 Set 4 Average

460 464 462
491 501 496
9 7 7

92.3% �59.3� 93.2% �59.2� 92.5% �59.3�
90.4% �53.4� 91.6% �53.0� 90.8% �52.4�
70.5% �4.9� 69.9% �5.0� 70.1% �5.0�

FIG. 10. Illustration of original nodule image and two different nodule-
enhanced images which were obtained with our previous scheme by use of
r dif
r the
ber o
N.

�
�
�

the difference-image technique and the ARG filtering technique.



2651 Shiraishi et al.: CAD scheme for the detection of lung nodules 2651
that the computer performance for the lung nodule detection
was slightly better when the degree of subtlety for visual
detection of lung nodules decreased.

Table IV shows the comparison of performances of the
computerized scheme in the three shape groups at the initial
and the final �third ANN� steps of identifications. The change
in the sensitivities from the initial to the final identifications
was comparable among the three shape groups. The change
in the number of false-positives per image was different in
the three shape groups. These results indicated that some
false-positive candidates in the shape group 1 and 2 were
distinguished effectively from true positives compared with
false-positives in group 3.

IV. DISCUSSION

Tan et al.35 reported that one of 500 chest radiographs
demonstrates a lung nodule, and that 90% of these nodules
are incidental radiologic findings detected unexpectedly in
radiographs obtained for unrelated diagnostic workups. Their
data might suggest that some lung nodules were likely to be
overlooked by radiologists if they did not focus their atten-

TABLE IV. Number of identified lung nodules and se
positives �FPs� per image for 924 images �data sets
detection for three shape groups.

T

Initial
detection

No. of nodules �sensitivity� 916 �
No. of FPs per image 5

Third ANN No. of nodules �sensitivity� 695 �
No. of FPs per image 5
Change in sensitivity

from initial to third ANN
75

Change in the number
of FPs per image

from initial to third ANN

8

FIG. 11. Average FROC curves of the computerized scheme of lung nodule
detection for four sets of training and test data sets.
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tion on the detection of lung nodules. In fact, in the
lawsuits,36 failure to observe a lung cancer on a chest radio-
graph was considered a frequent cause of a missed diagnosis.
The most important role of the CAD scheme for the detec-
tion of lung nodules would be to stimulate and prompt the
radiologist’s eyes and brain in order to avoid oversight of
lung nodules.

Because the incidence of lung nodules on chest images is
not very high �0.2% as described earlier�, it is very difficult
to collect a large number of lung nodule cases for research
purposes. For example, when a chest radiologist interprets
100 chest images per day for 250 days in a year, it will take
20 years for meeting with 1000 lung nodule cases. Of
course, radiologists can find many lung nodule images in
teaching files, textbooks, and lectures; however, the majority
of these lung nodules might be considered relatively obvious
for visual detection by the radiologist. Therefore, the number
of 924 chest images with 992 lung nodules may be consid-
ered as a sufficient number of cases in terms of the popula-
tion of lung nodules which were located and visualized on
the chest images.

ities for 992 lung nodules and the number of false
2� at the initial and the final �third ANN� steps of

Group 1 Group 2 Group 3

� 201 �20.3%� 311 �31.4%� 404 �40.7%�
13.7 20.4 25.2

� 147 �14.8%� 237 �23.9%� 311 �31.4%�
0.67 1.37 3.00

73.1% 76.2% 77.0%

4.9% 6.7% 11.9%

FIG. 12. Relationship between average sensitivity in the detection of lung
nodules for four test cases and the size of lung nodules detected.
nsitiv
1 and

otal

92.3%
9.3
70.1%
.05
.9%

.5%
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The radial gradient index �RGI�, which is a basic concept
of the ARG filter technique, has been used in our laboratory
for characterizing mass regions on mammography37 and for a
filtering technique on breast ultrasound.38 Unlike the RGI
and the RGI filtering technique which used a segmented le-
sion obtained by the region-growing technique, our ARG fil-
ter used a fixed circle for determining the filter output. A
number of filtering techniques based on the radial component
of local edge gradients toward the center of a region of in-
terest, rather than the use of gray-scale information on a lung
nodule, were developed in the past, such as the Fragmentary
Window Filtering method reported by Mao et al.20 in 1998
and the Convergence Index Filter reported by Wei et al.39 in
2000. Although these two filtering methods used only a
specified region such as a circular geometric pattern or para-
bolic lines toward the center, our method used radial compo-
nents of edge gradients within the entire region of the circle.
Therefore, our method would be more effective in the detec-
tion of lung nodules when the shape of a nodule is different
from a circle and/or has irregular edges, because more infor-
mation on localized edge gradients for a lung nodule can be
included in our method.

We assumed that the improvement of sensitivity in the
initial detection level was due to the application of the ARG
filtering technique and the localized search method, for
which all parameter settings took into account the informa-
tion on anatomical classification results. The localized search
method is more sensitive in the multiple thresholding proce-
dure for detecting subtle lung nodules, compared with our
previous method in which we used the histogram of the en-
tire lung field for multiple thresholding.

The performance of the computerized scheme obtained in
this study was not as high as that in previous reports,17,18

probably because the number of cases used in this study was
sufficiently large and thus the variation in lung nodule char-
acteristics was very large. Therefore, we may expect that a

FIG. 13. Relationship between average sensitivity in the detection of lung

nodules for four test cases and the degree of subtlety of lung nodules.
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comparable performance for the detection of lung nodules
would be obtained in clinical situations, because the comput-
erized scheme was trained for various types of lung nodules
which would be considered close to those in the general
population. In addition, when radiologists become familiar
with computer-identified false-positive candidates which can
be distinguished from actual nodules, some false positives
remaining in our final results would be relatively easy to
remove based on radiologists’ subjective judgment.

From the relationship between the computer performance
and the degree of subtlety for visual detection as shown in
Fig. 12, it would be reasonable to assume that the difficulty
in the detection of lung nodules by the computer was differ-
ent from that in radiologists’ interpretations. Therefore, im-
provement in radiologists’ performance would be expected
even if the performance of the computerized scheme for the
detection of lung nodules was not very high; in fact, we
demonstrated an improved performance in an observer per-
formance study.40

V. CONCLUSION

We developed an advanced computerized scheme for the
detection of lung nodules by incorporating a localized search
method based on the anatomical classification and automated
techniques for the parameter setting of three types of ANNs.
The performance of this CAD scheme, which was trained by
one half of 924 cases and then tested by the other half, pro-
vided improved detection of pulmonary nodules on chest ra-
diographs.
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